145 research outputs found

    Local soil quality assessment of north-central Namibia: integrating farmers' and technical knowledge

    Get PDF
    Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservationpractices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrates farmers’ field experiences (FFEs) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama soil units, KwSUs) based on FFEs, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ evaluation of a location depends on the KwSU described and is thereafter assessed by field soil texture (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). This three-level information aims to reveal SQ improvement potential by comparing, for any location, (a) estimated clay content against median clay content (specific to KwSU) and (b) soil organic status against calculated optimal values (depends on clay content). The combination of farmers’ and technical assessment cumulates advantages of both systems of knowledge, namely the integrated long-term knowledge of the farmers and a short- and medium-term SQ status assessment. The toolbox is a suggestion for evaluating SQ and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This suggested SQ toolbox is adapted to a restricted area of north-central Namibia, but similar tools could be developed in most areas where small-scale agriculture prevails

    Bequest of the Norseman - The Potential for Agricultural Intensification and Expansion in Southern Greenland under Climate Change

    Get PDF
    The increase of summer temperatures and a prolonged growing season increase the potential for agricultural land use for subarctic agriculture. Nevertheless, land use at borderline ecotones is influenced by more factors than temperature and the length of the growing season, for example soil quality, as the increasing lengths of dry periods during vegetation season can diminish land use potential. Hence, this study focuses on the quality of the soil resource as possible limiting factor for land use intensification in southern Greenland. Physical and chemical soil properties of cultivated grasslands, reference sites and semi-natural birch and grassland sites were examined to develop a soil quality index and to identify the suitability of soils for a sustainable intensification and expansion of the agriculture. The study revealed that soils in the study area are generally characterized by a low effective cation exchange capacity (CEC eff ) (3.7 ± 5.0 meq 100 g −1 ), low pH CaCl 2 (4.6 ± 0.4) and low clay and silt content (3.0 ± 1.0% and 38.2 ± 4.7%, respectively). Due to the high amount of coarse fraction (59.1 ± 5.8%) and the low amount of soil nutrients, an increasing threat of dry spells for soils and yield could be identified. Further, future land use intensification and expansion bears a high risk for concomitant effects, namely further soil acidification, nutrient leaching and soil degradation processes. However, results of the soil quality index also indicate that sites which were already used by the Norseman (980s–1450) show the best suitability for agricultural use. Thus, these areas offer a possibility to expand agricultural land use in southern Greenland

    Soil organic carbon in the rocky desert of northern Negev (Israel)

    Get PDF
    Purpose: So far, the soil organic carbon (SOC) literature is dominated by studies in the humid environments with huge stocks of vulnerable carbon. Limited attention has been given to dryland ecosystems despite being often considered to be highly sensitive to environmental change. Thus, there is insufficient research about the spatial patterns of SOC stocks and the interaction between soil depth, ecohydrology, geomorphic processes, and SOC stocks. This study aimed at identifying the relationship between surface characteristics, vegetation coverage, SOC, and SOC stocks in the arid northern Negev in Israel. Materials and methods: The study site Sede Boker is ideally suited because of well-researched but variable ecohydrology. For this purpose, we sampled five slope sections with different ecohydrologic characteristics (e.g., soil and vegetation) and calculate SOC stocks. To identify controlling factors of SOC stocks on rocky desert slopes, we compared soil properties, vegetation coverage, SOC concentration, and stocks between the five ecohydrologic units. Results and discussion: The results show that in Sede Boker, rocky desert slopes represent a significant SOC pool with a mean SOC stock of 0.58kgCm−2 averaged over the entire study area. The spatial variability of the soil coverage represents a strong control on SOC stocks, which varies between zero in uncovered areas and 1.54kgCm−2 on average in the soil-covered areas. Aspect-driven changes of solar radiation and thus of water availability are the dominant control of vegetation coverage and SOC stock in the study area. Conclusions: The data indicate that dryland soils contain a significant amount of SOC. The SOC varies between the ecohydrologic units, which reflect (1) aspect-driven differences, (2) microscale topography, (3) soil formation, and (4) vegetation coverage, which are of greatest importance for estimating SOC stocks in dryland

    The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport

    Get PDF
    Raindrop impact and subsequent aggregate breakdown can potentially change the movement behaviour of soil fractions and thus alter their transport distances when compared against non-impacted aggregates. In a given water layer, the transport distances of eroded soil fractions, and thus that of the associated substances across landscapes, such as soil organic carbon (SOC) and phosphorous, are determined by the settling velocities of the eroded soil fractions. However, using mineral size distribution to represent the settling velocities of soil fractions, as often applied in current erosion models, would ignore the potential influence of aggregation on the settling behaviour of soil fractions. The destructive effects of raindrops impacting onto aggregates are also often neglected in current soil erosion models. Therefore, the objective of this study is to develop a proxy method to effectively simulate aggregate breakdown under raindrop impact, and further identify the settling velocity of eroded sediment and the associated SOC. Two agricultural soils with different sandy and silty loam textures were subjected to rainfall using a raindrop aggregate destruction device (RADD). The aggregates sustained after raindrop impact were fractionated by a settling tube into six different classes according to their respective settling velocities. The same mass amount of bulk soil of each soil type was also dispersed and sieved into the same six classes, to form a comparison in size distribution. The SOC content was measured for each settled and dispersed class. Our results show the following: (1) for an aggregated soil, applying dispersed mineral grain size distribution, rather than its actual aggregate distribution, to soil erosion models would lead to a biased estimation on the redistribution of eroded sediment and SOC; (2) the RADD designed in this study effectively captures the effects of raindrop impact on aggregate destruction and is thus able to simulate the quasi-natural sediment spatial redistribution; (3) further RADD tests with more soils under standard rainfall combined with local rainfalls are required to optimize the method

    Does the invasive plant, Impatiens glandulifera , promote soil erosion along the riparian zone? An investigation on a small watercourse in northwest Switzerland

    Get PDF
    Purpose: The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in many river catchments in most European countries. Its preference for damp, nutrient-rich soils, along with its intolerance to cold weather and rapid dieback, has implicated it in promoting soil erosion along the riparian zone. Despite the implication, its influence on the sediment dynamics of river systems remains unconfirmed. This communication reports the preliminary findings of ongoing work to investigate a possible link between I. glandulifera and accelerated erosion rates in inland river systems. Materials and methods: Erosion pins, a micro-profile bridge, and a digital caliper were employed to measure changes in the soil surface profile (SSP) at six separate locations, each contaminated with I. glandulifera, along the riparian zone of a small watercourse in northwest Switzerland. Changes in SSP were also measured at an identical number of nearby locations supporting natural vegetation, in order to establish baseline erosion conditions. Soil surface profiles at all 12 locations were re-measured on seven separate occasions, from October 2012 to May 2013. This covers the time before dieback occurred to the germination and seasonal regrowth of new plants. Results and discussion: A total of 720 individual SSP measurements were recorded during the above monitoring period. Increasingly negative values relative to initial values were documented at most transects, indicating a net reduction in soil surface elevations. This is interpreted as evidence of the removal (i.e., erosion) of surface material. Paired samples statistical analysis of the data indicate that erosion from contaminated sites was significantly greater than erosion from topographically comparable reference sites (t =−5.758; P < 0.05; N = 359) supporting natural vegetation. Conclusions: The results provide tentative yet compelling evidence that I. glandulifera promotes soil erosion along the riparian zone of the watercourse investigated. Given the unrelenting spread of this notoriously invasive plant throughout inland river systems in many countries, the likelihood of greater quantities of nutrient-rich sediment entering into aquatic environments may steadily reduce water quality in all affected catchments. An absence of effective control measures capable of halting or even slowing its rate of invasion may make it increasingly difficult for affected European Union member states to meet and then maintain key water quality standards set by the Water Framework Directive (WFD) when fully implemented in 2015

    Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets

    Get PDF
    Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an 8-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots collected during two field campaigns (2014–2015), we model AGB as a function of the Advanced Land Observing Satellite Phased Array L-band synthetic aperture radar (PALSAR and PALSAR-2) and dry season Landsat vegetation index composites, for two periods (2007 and 2015). Differences in AGB between 2007 and 2015 were assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km2). We find that woodland degradation and woody thickening contributed a change in AGB of −14.3 and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. −1.9 and 0.2 Tg over 1.3% and 0.2% of the study area, respectively

    Evaluating the carbon sequestration potential of volcanic soils in southern Iceland after birch afforestation

    Get PDF
    Afforestation is a strategy to sequester atmospheric carbon in the terrestrial system and to enhance ecosystem services. Iceland's large areas of formerly vegetated and now degraded ecosystems therefore have a high potential to act as carbon sinks. Consequently, the ecological restoration of these landscape systems is part of climate mitigation programmes supported by the Icelandic government. The aim of this study was to explore the change in the soil organic carbon (SOC) pools and to estimate the SOC sequestration potential during the re-establishment of birch forest on severely degraded land. Differently aged afforested mountain birch sites (15, 20, 25 and 50 years) were compared to sites of severely degraded land, naturally growing remnants of mountain birch woodland and grasslands which were re-vegetated using fertilizer and grass seeds 50 years ago. The soil was sampled to estimate the SOC stocks and for physical fractionation to characterize the quality of the SOC. The results of our study show that the severely degraded soils can potentially sequester an additional 20 t C ha−1 (0–30 cm) to reach the SOC stock of naturally growing birch woodlands. After 50 years of birch growth, the SOC stock is significantly lower than that of a naturally growing birch woodland, suggesting that afforested stands could sequester additional SOC beyond 50 years of growth. The SOC fractionation revealed that at all the tested sites most of the carbon was stored in the <63 ”m fraction. However, after 50 years of birch growth on severely degraded soils the particulate organic matter (POM) fraction was significantly enriched most (+12 t POM-C ha−1) in the top 30 cm. The study also found a doubling of the dissolved organic carbon (DOC) concentration after 50 years of birch growth. Therefore and due to the absence of any increase in the tested mineral-associated SOC fractions, we assume that the afforestation process evokes a carbon deposition in the labile SOC pools. Consequently, parts of this plant-derived, labile SOC may be partly released into the atmosphere during the process of stabilization with the mineral soil phases in the future. Our results are limited in their scope since the selected sites do not fully reflect the heterogeneity of landscape evolution and the range of soil degradation conditions. As an alternative, we suggest using repeated plot measurements instead of space-for-time substitution approaches for testing C changes in severely degraded volcanic soils. Our findings clearly show that detailed measurements on the SOC quality are needed to estimate the SOC sequestration potential of restoration activities on severely degraded volcanic soils, rather than only measuring SOC concentration and SOC stocks.This work contributes to the CarbBirch project funded by Orkuveita Reykjavikur and the work within the Nordic Centre of Advanced Research on Environmental Services (CAR-ES) and the Forest Soil C-sink Nordic Network (FSC-Sink). We want to thank our lab technician and friend Marianne Caroni, who sadly left us much too early, for her help and inspired discussions. We would also like to extend our gratitude to Ruth Strunk and Judith Kobler for their help in the laboratory during carbon and volcanic clay measurements. Nina Carle and Mathias WĂŒrsch helped during data gathering in the field and in the laboratory. Our sincerest thanks go to Gudmundur Halldorsson and the people of the Soil Conservation Service at Gunnersholt for their help and hospitality. Further, the authors gratefully acknowledge Vladimir Wingate for improving the grammar. The comments provided by Lorenzo Menichetti, Robert Qualls and Steven Sleutel are much appreciated.Peer Reviewe

    Mapping decadal land cover changes in the woodlands of north eastern Namibia from 1975 to 2014 using the Landsat satellite archived data

    Get PDF
    Woodlands and savannahs provide essential ecosystem functions and services to communities. On the African continent, they are widely utilized and converted to subsistence and intensive agriculture or urbanized. This study investigates changes in land cover over four administrative regions of North Eastern Namibia within the Kalahari woodland savannah biome, covering a total of 107,994 km2. Land cover is mapped using multi-sensor Landsat imagery at decadal intervals from 1975 to 2014, with a post-classification change detection method. The dominant change observed was a reduction in the area of woodland savannah due to the expansion of agriculture, primarily in the form of small-scale cereal and pastoral production. More specifically, woodland savannah area decreased from 90% of the study area in 1975 to 83% in 2004, and then increased to 86% in 2014, while agricultural land increased from 6% to 12% between 1975 and 2014. We assess land cover changes in relation to towns, villages, rivers and roads and find most changes occurred in proximity to these. In addition, we find that most land cover changes occur within land designated as communally held, followed by state protected land. With widespread changes occurring across the African continent, this study provides important data for understanding drivers of change in the region and their impacts on the distribution of woodland savannahs

    Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands

    Get PDF
    The sandy croplands in the Free State have been identified as one of the main dust sources in South Africa. The aim of this study was to investigate the occurrence and strength of physical soil crusts on cropland soils in the Free State, to identify the rainfall required to form a stable crust, and to test their impact on dust emissions. Crust strength was measured using a fall cone penetrometer and a torvane, while laboratory rainfall simulations were used to form experimental crusts. Dust emissions were measured with a Portable In-Situ Wind Erosion Laboratory (PI-SWERL). The laboratory rainfall simulations showed that stable crusts could be formed by 15 mm of rainfall. The PI-SWERL experiments illustrated that the PM10 emission flux of such crusts is between 0.14% and 0.26% of that of a non-crusted Luvisol and Arenosol, respectively. The presence of abraders on the crust can increase the emissions up to 4% and 8% of the non-crusted dust flux. Overall, our study shows that crusts in the field are potentially strong enough to protect the soil surfaces against wind erosion during a phase of the cropping cycle when the soil surface is not protected by plants
    • 

    corecore